Page 4 of 4 FirstFirst ... 234
Results 31 to 37 of 37

Thread: Injector settings?

  1. #31
    Lifetime Member hquick's Avatar
    Join Date
    Jan 2007
    Posts
    1,371

    Default

    It's suggested in the tutorial to change all values in B3647 to something other than stoich or you'll end up with a 'semi' closed loop setup. Your O2's will be trimming.

    On another note...after signing up to about 100 different forums to be able to use their search functions...I found the attached spreadsheet.
    Just have to work out how to use it.

    OK...found the info to go with the spreadsheet. (wish I knew the name of the guys to whom credit should go for this info)



    since i just went though this, i thought i should write down what i learned before i forgot it. hopefully it will help some people ...

    please accept my apologies beforehand for how long and rambling it is ... so here goes ...

    the injector timing table is based on crank degrees, and specifies the degree at which the injector pulse should end. so it would be helpful if we came had a way to determine, for a given rpm and load, at what cam degree the injector pulse should end. note that crank degrees go from 0-720 instead of from 0-360 because the crank rotates 2 times for each revolution of the cam.

    when there is little or no overlap between the closing of the exhaust valve and the opening of the intake valve, it may be desirable to actually start injecting the fuel before the intake valve opens. in this case, the fuel is squirted onto the back of the closed intake valve, because that may help atomize the fuel.

    but if there is alot of valve overlap, then that approach is not as desirable, because when the intake valve opens, some of the fuel that was waiting to go into the cylinder will get mixed in with the exhaust (and ejected from the cylinder) and therefore not be burned, potentially resulting in a lean condition.

    so a factor in deciding how early to start the injectors may be how much overlap there is in your cam.

    here are my thoughts on a process to determine what values to put in the injector timing table ...

    before we can pick an ending degree, we need a way to determine how many degrees the injector needs to provide the right amount of fuel. in order to do that, we need a way to figure out how much fuel is needed. once we know that, we can determine how many milliseconds the injector needs to be open to provide the fuel. then need to be able to figure out, for a given rpm, how many degrees the camshaft will turn during the time the injector is open. then, knowing the degrees at which the valves open and close, we can finally pick reasonable ending degrees for the injector timing.

    for a certain rpm and load, we can estimate what the injector pulsewidth would be. for example, suppose we had a 410 with 42# injectors spinning at 3000 rpm under 50% load. what would the estimated pulsewidth be?

    one cylinder has a maximum volume of 410/8, or 51.25 ci. since the volumetric efficiency of the engine is not 100%, for our example, let's use .85 as the VE factor, which means that a given cylinder will end up with a maximum of 51.25*.85 = 43.5625 ci of air. since our example is at 50% load, that would be 43.5625 *.50 = 21.78125 ci. this is the estimated amount of air (in cubic inches) each cylinder should receive per cycle.

    there is a conversion factor that says one cubic foot of air contains .075 lbs of air. so in our example, we have 21.78125 / (12*12*12) = 0.01260489 cubic feet of of air. so we have 0.01260489 * .075 = 0.00094536675 lbs of air

    now that we know we have 0.00094536675 lbs of air in the cylinder, we can determine how much fuel we need ... using the standard air/fuel ratio of 14.67, we would need 0.00094536675/14.64 = .0000645742316 lbs of fuel.

    since injectors are given in lbs per hour, and pulsewidths are in milliseconds, we need to convert to lbs per ms. so for 42# injectors, we have 42/(60 minutes*60 seconds*1000 milliseconds) = 0.0000116666667 lbs of fuel per ms.

    so to get .0000644421779 lbs of fuel, we would open the injectors for a pulswidth of .0000645742316/0.0000116666667 = 5.53493412 ms. but since there is a small delay (about .05 ms) before the injectors actually start squirting the fuel, lets add .05 to the pw, getting about 5.58 for the desired injector pulsewidth.

    notice that if we figure out the pw for the case where load is 100% (WOT), then we can just multiply that by the load later to simplify things. let's do that here:

    max air in lbs: (51.25*.85*.075)/(12*12*12) = 0.00189073351 lbs air
    fuel needed for max air above: 0.00189073351 / 14.67 = 0.000128884357 lbs fuel
    fuel in lbs per ms: (42/360000) = 0.0000116666667
    ms needed to deliver the above fuel: (0.000128884357 / 0.0000116666667) = 11.05 ms
    note that we will need to add the .05 ms delay to the pulsewidth after factoring in the load ...

    so 11.10 ms is needed to deliver the most fuel the injecter should have to deliver. of course, this will be slightly higher if we want the afr to be lower. like when at WOT for example.

    we will multiply this to the load later ...

    ok, we are halfway there... now we get to figure out how many degrees the crank will turn during the 5.58 ms from our example above. that depends on how fast the crank is turning.

    in our example, the crank is turning 3000 rpm. since there are 360 degrees in a revolution, 60 seconds per minute and 1000 ms per second, then we have the crank turning at (360*3000) / (60*1000) = 18 degrees per ms. so in 5.58 ms, the crank turns 18 * 5.58 = 100.44 degrees.

    notice that the only variable above is the rpm, so for a given rpm we can do this to get the degrees per ms:

    360*(rpm)/(60*1000)
    = 360*rpm/60000
    = rpm*(360/60000)
    = rpm*0.006

    we'll use this later too ... on to the cam events ...

    so let's say that our cam has an intake lobe center of 110, a lsa of 112, a duration of 230 at .050" and 290 total duration. so how does that translate into crank degrees? here's how:

    by definition, crank degrees 0-360 refer to the first revolution of the crank, and degrees 360-720 refer to the second revolution of the crank.

    intake events are offsets from top dead center (TDC) or bottom dead center (BDC)of the cylinder during the phase in question. for the intake valve events, TDC is at degree 360.

    since the intake lobe has a center of 110, that means the valve is open its highest at 360+110=470 degrees. a duration of 290 means that the valve opens at 470-(290/2) = 325 and closes at 470+(290/2) = 615 degrees. similarly, the valve is at .050" or higher from degree (470)+/-(230/2), or 355 and 585 degrees.

    a lsa of 112 means that the exhaust lobe center is 112*2 degrees before the intake lobe center.

    so with a lsa of 112, our exhaust valve is fully open (the exhaust lobe center) at 470-(112*2) = 246 degrees. doing the same calcs as above, we have open/close at 101 and 391, and at .050" the open/close events are 131 and 361 degrees.

    now notice that the exhaust closes at 391, and the intake opens at 325. so both valves are open for 391-325 = 66 degrees. this is the total overlap. similarly, at .050" there is an overlap of 6 degrees. in this case, i would probably want the fuel to start injecting when the exhaust valve closes, or at about degree 390.

    now we are almost there ... for a given load and rpm, we can figure out how much ms of injector we need, and how many degrees that ms needs. now all we have to do is tie that to the cam events for our cam and we can fill in the table with values that should be fairly reasonable.

    to finish off our example, with the 410ci engine and 42# injectors, 50% load at 3000 rpm with our cam as above, the calculation for that cell would be ...

    the needed injector pw would be: 11.05 * .50 + .05 = 5.595 ms
    the crank rotation for 5.595 ms at 3000 rpm would be: 3000 *.006 * 5.595 = 101 degrees (rounded)
    if the pw starts when the exhaust valve closes ...
    the injector fires from degree 390 thru 491 (390+101)

    so 491 should be a fairly reasonable value for that cell.

    Injector Duty cycle percentage is the amount of time the injector is ON vs OFF for all four strokes of a cylinder. The amount of time to complete a cycle (i.e. 4 strokes) is directly related to the RPMs. To get the complete cycle time follow this formula:

    Complete Cycle Time in milliseconds = 60 * 1000 * 2 / RPMs
    60 converts minutes to seconds
    1000 converts seconds to milliseconds
    2 is in there because there are 2 revolutions in 1 complete cycle

    So at 6000RPMs, a cycle takes 20ms.

    So you take the time an injector is open (in ms) and divide it by the time it takes to complete a cycle (in ms). This gives you your Injector Duty Cycle in Percents.

    So if you are seeing 17ms@6000RPMs, that would be 85% Duty cycle.

    update ...

    i am actually very surprised at how much of a difference setting the injector timing has made

    my idle is now very steady at about 800. before that, it would surge and hunt like crazy, often dieing ... not only at startup, but even when warm.

    and my gas mileage is much better.

    bottom line ... the engine runs much better now than before

    you guys with cams with big overlaps, i highly recommend looking at your injector timing values

    Ahhh....just found the original thread/source.

    http://eectuning.org/forums/viewtopi...timing&start=0
    Attached Files Attached Files
    Last edited by hquick; April 14th, 2008 at 12:28 AM.
    Howard

    YOU ONLY NEED TWO TOOLS IN LIFE - WD-40 AND DUCT TAPE. IF IT DOESN'T
    MOVE AND SHOULD, USE THE WD-40. IF IT SHOULDN'T MOVE AND DOES, USE THE
    DUCT TAPE.
    IF YOU CAN'T FIX IT WITH A HAMMER, YOU'VE GOT AN ELECTRICAL PROBLEM.


    98 K1500 'HOLDEN' Suburban.
    Custom Whipple SC, Mercruiser Marine intake, 0411 PCM, 4L80E w/shift kit

  2. #32
    Joe (Moderator) joecar's Avatar
    Join Date
    Apr 2003
    Posts
    28,403

    Default

    I have to say them Ford people have their ducks in a row.

  3. #33
    Joe (Moderator) joecar's Avatar
    Join Date
    Apr 2003
    Posts
    28,403

    Default

    Quote Originally Posted by Aloicious View Post
    Ah, gotcha. can't you just raise the entire CL enable temp table to something like 140*c that will never be reached, then you 'shouldn't' enter CL at all. thats what I've been doing, but keeping b3647 at 14.68
    Don't forget that COS3/COS5 have a special feature:

    In OL, if any B3647 cells contain stoich (as defined by B3601), then the PCM will trim to stoich using STFT's when in those cells.

  4. #34
    Joe (Moderator) joecar's Avatar
    Join Date
    Apr 2003
    Posts
    28,403

    Default

    Howard,

    Your post brings up a questions I have rolling around in my mind for some time:

    B3702 Injector Timing:
    a. what physical event is these timing values relative to...?
    b. wouldn't the event of a. be independent of camshaft used...?
    c. wouldn't it's values mean time (in ms) before that physical event...?
    d. why can't there be negative values...?
    Last edited by joecar; April 14th, 2008 at 02:31 AM.

  5. #35
    Lifetime Member Aloicious's Avatar
    Join Date
    Nov 2007
    Posts
    453

    Default

    Quote Originally Posted by joecar View Post
    Don't forget that COS3/COS5 have a special feature:

    In OL, if any B3647 cells contain stoich (as defined by B3601), then the PCM will trim to stoich using STFT's when in those cells.
    damn, I was not doing that on my autoVE, that may be part of the issue...no work or school today/tonight, so its tuning night.

    on another note, I've been in CLMAF and using the LTFT to tune the B3701, and it seems to be doing well, the lean/rich issues aren't totally gone, they're a little better, but still there, however, just using the B3701, I've got the LTFT from -15 to -20 up to around 0 to -2....also found one of my O2 sensors is lazy (reads like -7 when the other is at -1, and like -25 when the other is -12.)

    Howard, thats some excellent info, I've still gotta really digest it and try to see whats going on...but how would we go about using that spreadsheet to alter B3702 - injector timing?
    1996 c1500 gen1e 5.7L - the "LS31", 24x CNP, LS2 coils, modified T56, 12200411PCM running COS3, zz4 cam, custom MPFI, etc. coming soon: Twin Turbos

  6. #36
    Lifetime Member hquick's Avatar
    Join Date
    Jan 2007
    Posts
    1,371

    Default

    Here's some info a Ford Lightning guy just gave me.
    Attached Files Attached Files
    Howard

    YOU ONLY NEED TWO TOOLS IN LIFE - WD-40 AND DUCT TAPE. IF IT DOESN'T
    MOVE AND SHOULD, USE THE WD-40. IF IT SHOULDN'T MOVE AND DOES, USE THE
    DUCT TAPE.
    IF YOU CAN'T FIX IT WITH A HAMMER, YOU'VE GOT AN ELECTRICAL PROBLEM.


    98 K1500 'HOLDEN' Suburban.
    Custom Whipple SC, Mercruiser Marine intake, 0411 PCM, 4L80E w/shift kit

  7. #37
    Joe (Moderator) joecar's Avatar
    Join Date
    Apr 2003
    Posts
    28,403

    Default

    Howard, thanks...

Page 4 of 4 FirstFirst ... 234

Similar Threads

  1. correct Fuel injector settings Excel calculator
    By 98 tigershark in forum Gen IV V8 Specific
    Replies: 0
    Last Post: July 5th, 2009, 07:12 PM
  2. Fan settings E38
    By eboggs_jkvl in forum E37, E38 & E67 PFI ECM's
    Replies: 10
    Last Post: August 14th, 2008, 11:15 PM
  3. Need help with IAC settings
    By SV8346 in forum General (Petrol, Gas, Ethanol)
    Replies: 15
    Last Post: February 1st, 2008, 08:55 PM
  4. Injector offsets and injector slopes....
    By Redline Motorsports in forum General (Petrol, Gas, Ethanol)
    Replies: 2
    Last Post: June 19th, 2006, 02:32 AM
  5. PE vs RPM settings
    By ahall1 in forum General (Petrol, Gas, Ethanol)
    Replies: 1
    Last Post: August 12th, 2005, 12:28 AM

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •